

MOSFET probe for Intra Operative Radiotherapy

M.A. Carvajal¹, M. Jiménez-Melguizo², P. Escobedo¹, D. Guirado², A. Martinez-Olmos¹, A.J.Palma¹, ¹ECsens, CITIC-UGR, Electronics Department, University of Granada, E-18071 Granada, Spain ² Universitary Hospital "San Cecilio" Granada, Spain.

Introduction

- Intra Operative Radiotherapy (IORT):
- Electron beams
- Only one irradiation session
- Wired sensors are required

INTRODUCTION

Dosimetry system based on wired MOSFETs

- Why MOSFETs?
- Small size
- Immediate readout
- Easy calibration
- Reproducibility

 To measure dose as precise as possible using commercial los cost MOSFETs in electron beams treatments

- Stacked
- Biased mode
- Wired sensor

State of art in our research group: Reader unit

RAD 2018, Ohrid (Macedonia) Sensors and Actuators A 247 (2016) 269–276

State of art in our research group: Sensor modules

Universidad de Granada

 Sensor modules based on commercial transistors and RADFETs form Tyndall:

State of art in our research group: Thermal compensation DMOS

Inverting the current source the bulk source diode is activated

RAD 2018, Ohrid (Macedonia) Sensors and Actuators A 249 (2016) 249–255

Our approach

- Two biased and stacked commercial DMOS transistor
- Wired sensors (1.80 m length)
- Dimensions: under 5 mm
- Measurements every 5 s
- Electron beams
- Four sensor states
 - Storage
 - Read out
 - Temperature measurements
 - Sensing

Sensor states: Storage

- All jFETs are ON
- All terminals are connected

RAD 2018, Ohrid (Macedonia)

Sensor states: Read out

- Current is forward
- G-D jFETs are ON
- DMOS is saturation regime

Sensor states: T measuring

- Current is reversed
- G-D jFETs are ON
- Diode is activated

Sensor states: T measuring

 Gates are connected

- S-D jFETs are ON
- G-D jFETs are OFF

Measurement chronogram

Sensor manufacturing

- Thickness Printed Ciruit Board has been reduced down 0.8 mm.
- Wired sensors (1.80 m length)
- pMOS transistors in both PCB sides
- jFET included in the reader unit connector
- Diameter of the sensor under 5 mm

Experimental setup

- Electron beams (LINAC: Siemens Artiste):
 - With and without applicator
 - Solid water under the sensor modules
 - Electrons of 12 MV, field 10x10 cm²

RAD 2018, Ohrid (Macedonia)

Experimental setup

- Sensor at the iso-center of the source
- Gantry at 0° for sensitivities studies
- Reader unit shield with metal housing to reduce the absorbed dose

- With applicator field 15x15 cm²
 - Sensitivities: (14.4±1.3) mV/Gy and (13.8±1.1) mV/Gy

- Without applicator field 10x10 cm²
 - Two main dispersion between sensitivities: from 8 to 13 mV/Gy.
 - A deeper study is required:
 - Build up?

- A prototype of a real time dosimetry system based on commercial transistors have been developed, suitable for in-vivo dosimetry.
- A higher number of transistors of ZVP3306 must be studied in order to have a better statistical uncertainties.
- The rise of the V_S of lateral transistors must be studied in depth, however it was not observed for DMOS.

CURRENT AND FUTURE TASKS

- Include the biasing module into the reader unit.
- Study the V_S drift due to external polarization (two currents, pulsed,...).
- Thermal correction of DMOS using the diode is being studied.
- Study the response of a wider group of ZVP3396 with photons and electron beams.
- Study the response of RADFETs.
- To test the bluetooth link inside the bunker

- University Hospital San Cecilio (Granada, Spain).
- For funding this work: Ministerio de Ciencia e Innovacion and the Junta de Andalucía and CEI-BioTIC-UGR.
- And partially supported by European Regional Development Funds (ERDF)

Thankyou for your attention

you in Granad

here!

Miguel Ángel Carvajal Rodriguez University of Granada (Spain)

carvajal@ugr.es